Geometrical definitions

Point
Midpoint

Vertical straight line

Square

Oval - Ellipse

Midpoint

Circle

Plane shape Two dimensional shape

Curved line

Triangle

Half-circle

Solid
Three dimensional shape

Broken line

trapezium (UK) / trapezoid
(US)

Hexagon

Parallel lines

Perpendicular lines

rhombus

Pentagram

Geometrical definitions

Disc

Right angle

Circumference

Depths

Cylinder

Obtuse angle

Height

Cube

> Acute angle

Perimeter

Face

Prism

Straight angle

Diagonal

Base

Sphere

Reflex angle

Segment

Full rotation angle

Sector

Sides

Vertex (pl. vertices)

Edge

Definitions in geometry

Note the following mathematical symbols:
< : is less than
> : is more (greater) than
\cong : is approximately equal to
\angle : angle
II : is parallel to

Definitions in geometry

$\angle \mathrm{EBC}$ is a right angle, therefore EB is perpendicular to the line AD.
$\angle \mathrm{FCD}$ is a right angle, consequently FC is perpendicular to the line AD.

Since both EB and FC are perpendicular to AD, EB is parallel to FC, i.e. EB II FC
As $\angle \mathrm{FCD}$ is $90^{\circ}, \angle \mathrm{GCF}$ and $\angle \mathrm{GCD}$ are complementary angles, i.e. $\angle \mathrm{GCF}+\angle \mathrm{GCD}=90^{\circ}$
The figure BCFE is a rectangle

Definitions in geometry 2-D figures

Figure on the left is a parallelogram. Opposite sides of a parallelogram are equal and parallel.

Figure on the right is a rectangle. Rectangle is a parallelogram whose four angles are right angles.

Figure on the left is a square. A square is a rectangle whose four sides are equal in length.

Definitions in geometry 2-D figures

Figure on the left is a triangle. A triangle has three sides.

Figure on the left is a quadrilateral. A quadrilateral has four sides.

Figure on the right is a pentagon. A pentagon has five sides.

Geometrical definitions

TRIANGLES	QUADRILATERALS	REGULAR POLYGONS
Equilateral triangle All sides equal; interior angles 60°	Square All sides equal; all angles 90°	Equilateral triangle 3 sides
Isosceles triangle 2 sides equal; 2 congruent angles	Rectangle Opposite sides equal, all angles 90°	Square 4 sides
Scalene triangle No sides or angles equal	Rhombus All sides equal; 2 pairs of parallel lines; opposite angles equal	Regular Pentagon 5 sides

Geometrical definitions

Right triangle
1 right angle
Obtuse triangle
A obtuse angle

Regular and Irregular Polygons

Interior angles add up to 180° Equilateral Triangle
Interior angles add up to 720° Arregular Hexagon

Regular and Irregular Polygons

Interior angles add up to 1260° Angle: 140°

Geometrical definitions

Tetrahedron Faces: 4; Edges: 6; Vertices: 4	Square pyramid Faces: 5; Edges: 8; Vertices: 5	Hexagonal pyramid Faces: 7; Edges: 12; Vertices: 7
Cube Faces: 6; Edges: 12; Vertices: 8	Cuboid Faces: 6; Edges: 12; Vertices: 8	Triangular prism Faces: 5; Edges: 9; Vertices: 6
Octahedron Faces: 8; Edges: 12; Vertices: 6	Pentagonal prism Faces: 7; Edges: 15; Vertices: 10	Hexagonal prism Faces: 8; Edges: 18; Vertices: 12

Geometrical definitions

Dodecahedron Faces: 12; Edges: 30; Vertices 20	Sphere Faces: 1; Edges: 0; Vertices 0	Ellipsoid Faces: 1; Edges: 0; Vertices 0
Icosahedron Faces: 20; Edges: 30; Vertices: 12	Cone Faces: 2; Edges: 1; Vertices: 0 or 1	Cylinder Faces: 3; Edges: 2; Vertices: 0

Dimensions of 2-D figures

The length of the rectangle is 4 cm . The width of the rectangle is 2 cm .

This circle has a radius of 2 cm .
This circle has a diameter of 4 cm .

This circle has an area of $12.57 \mathrm{~cm}^{2}$.
This circle has a circumference of 12.57 cm .
This circle is 4 cm in diameter.
This circle is 12.57 cm in circumference.
The diameter of this circle is 4 cm .
The area of this circle is $12.57 \mathrm{~cm}^{2}$.
This radius of this circle is 2 cm .
The circumference of this circle is 12.57 cm .

Dimensions of 2-D figures

The verb 'has' can be used to describe the dimensions of a circle:

This circle has a radius of 2.0 cm . diameter $\quad 4.0 \mathrm{~cm}$ area $\quad 12.57 \mathrm{~cm}^{2}$ circumference 12.57 cm

This circle is 4.0 cm 12.57 cm in circumference.

The
diameter of
area
radius
circumference
4.0 cm
$12.57 \mathrm{~cm}^{2}$
2.0 cm
12.57 cm

Dimensions of 3-D figures

The figure on the left is a ractangular prism.
The verb 'has' can be used to describe the dimensions of a rectangular prism:

This rectangular prism has a
width
of
3.0 cm .
4.0 cm
1.0 cm
height
volume
surface area
$12 \mathrm{~cm}^{3}$
$38 \mathrm{~cm}^{2}$
$12 \mathrm{~cm}^{3}$: twelve cubic centimeters.

Dimensions of 3-D figures

The verb 'is' can also be used to describe the dimensions of a rectangular prism:3 cm

This rectangular prism is 3.0 cm in width. 4.0 cm length.
1.0 cm
$12.0 \mathrm{~cm}^{3}$
height. volume.

The volume of this rectangular prism is $12 \mathrm{~cm}^{3}$.
This rectangular prism is 4 cm long.
3 cm wide.
1 cm high.

Dimensions of 3-D figures

The cylindrical water tank has a capacity of $200 \mathrm{~m}^{3}$. The rectangular water tank has a capacity of $400 \mathrm{~m}^{3}$.

The capacity of the cylindrical water tank is $200 \mathrm{~m}^{3}$. The capacity of the rectangular water tank is $400 \mathrm{~m}^{3}$.

